
MN-GEMS: A Timing-aware Simulator for a Cloud Node with Manycore, DRAM,
and Non-Volatile Memories

Woomin Hwang, Ki-Woong Park, and Kyu Ho Park

Computer Engineering Research Laboratory, KAIST
{wmhwang, woongbak}@core.kaist.ac.kr, kpark@ee.kaist.ac.kr

Abstract—In this paper, we describe a part of our on-
going research project aimed at the management of manycore
and Hybrid Main Memory with DRAM and Non-Volatile
RAMs (NVRAMs). By the needs of simulation and through
investigation of the requirements for the target management
system, we found that the simulation platform requires support
for manycore, a timing-aware simulation of hybrid memory
with DRAM and NVRAM, and a Performance Monitoring Unit
(PMU). Therefore, we built MN-GEMS, a full-system simulator
for the consolidated VMs of a cloud node satisfying all these
requirements.

Keywords-virtual machines; simulator; memory contention;
scheduling; NVRAM; hybrid main memory

I. INTRODUCTION

As manycore processors and non-volatile RAMs

(NVRAMs) have become promising hardware components

for emerging computing systems, many studies have

investigated system designs enhanced with the above

components for energy efficiency and improvements in

performance. In this research direction, we have performed

a project, MN-MATE [1], using a novel architecture

and management techniques for resource allocation of

a number of cores with large sizes of DRAM and

NVRAM. As a fundamental way of performing this kind

of research, simulation-based designs and evaluations

stand out as the most widely used mechanisms. The

use of software simulators allows the validation of

architecture designs and the exploration of new concepts

before actual implementation. Thus, there is a need for a

well-defined simulation environment for the study on the

manycore system and the NVRAM-based system design.

By thoroughly investigating our research direction, we

identified three requirements for the simulation environment

construction: 1) support for manycore simulation; 2)

timing-aware simulation of hybrid main memory based on

the DRAM and NVRAM access characteristics; and 3) a

Performance Monitoring Unit (PMU).

Table I shows the functionalities of conventional simula-

tion platforms. The last row in Table I clarifies our simula-

tion design goal with respect to desirable functionalities to

be achieved. Among the five requirements, M5 and Simics

provide only one functionality, even though they support

Table I
FUNCTIONALITIES OF FULL-SYSTEM SIMULATORS

Manycore
Timing Simulation

PMU Acceleration
DRAM NVRAM

M5 [2] X O X X X

Simics [3] O X X X X

GEMS [4] O O X X X

MN-GEMS O O O O O

a full-system simulation. They give little consideration to

the different access latencies that are in accord with the

NVRAM access type and to the memory access request

ordering generated from manycore. Even though GEMS has

attained a consensus that it can enable DRAM timing sim-

ulation functionality as well as manycore support, it cannot

support an NVRAM timing simulation, runtime feedback

of performance statistics. Finally, previous simulators have

not offered much of a solution to reducing long simulation

times when timing-awareness is enabled with a full-system

simulation.

To alleviate these limitations, we realized a more ad-

vanced simulation platform, MN-GEMS, which meets the

above requirements. GEMS is considered a promising foun-

dation for our simulation platform. Our simulation platform

addresses the need for manycore support, a timing-aware

simulation of multiple types of main memory, and a PMU by

devising a memory traffic multiplexer and a reconfigurable

memory controller. Moreover, the simulation platform is

open and modular, allowing simulation users to produce

any kind of NVRAM that they may desire. Our MN-GEMS

simulation platform is used as a base simulator for ongoing

research issues in the MN-MATE project. The remainder of

this paper is organized as follows: In Section II, we elaborate

on our simulation platform and its three novel mechanisms,

then we conclude with the current status and the next steps.

II. MN-GEMS SIMULATION PLATFORM

The primary purpose of MN-GEMS is to simulate a cloud

node equipped with manycore and a hybrid main memory

with regard to the various access latencies of the DRAM

and NVRAMs. To meet this requirement, the simulator

models a hardware shown in Figure 1 and performs a full-

system simulation. The hardware model is composed of

processors containing a number of cores, a two-level cache,

2011 IEEE 4th International Conference on Cloud Computing

978-0-7695-4460-1/11 $26.00 © 2011 IEEE

DOI 10.1109/CLOUD.2011.104

734

Figure 1. Modeled hardware and execution environment in the simulator

a hybrid main memory, and a PMU that collects per-task

events related to the application performance. We built the

MN-GEMS by configuring GEMS to support manycore and

adding a NVRAM timing simulation module and a PMU.

A. Manycore support

To simulate manycore processors, we configured GEMS

so that a processor consists of 8 cores, core-private L1

caches, and a shared L2 last level cache (LLC). All cores

in the processor share same LLC. Access to the caches for

any task is delayed in accordance with the memory timing

model specified.

B. Timing-aware simulation of hybrid main memory with
DRAM and NVRAMs

The goal of a timing-based simulation is to get re-

sults consisting of not only the execution result itself,

but also the latency generated by event handling. GEMS

basically provides a timing-based simulation module with

the timing parameters of DDR2 SDRAM. We built another

timing-based simulation module for the timing parameters

of NVRAM and added a request controller to both of

memories. The request controller schedules memory access

requests according to its scheduling policy. Therefore, the

hierarchy for the overall timing-aware simulation module for

hybrid memory is shown in Figure 1. We used PRAM [5]

and STT-RAM timing parameters as examples of NVRAM.

The overall procedure for the timing-aware memory ac-

cess timing simulation is shown in Figure 2. If a task

accesses memory, a memory access request is generated and

issued to the request controller. The issued request is inserted

into one of two controllers according to the target memory

type of the request. In the request controller, requests are

sorted so that requests with the highest priority are issued

first. If issued, the state of the issued request is changed to

issued and waits for the specified time. When the request is

done waiting, a response is sent back to the requester.

Figure 2. Internal procedure of timing-aware simulation

C. Performance monitoring of tasks

The memory access pattern of a task is one of the

most useful hints to predict future memory contention when

scheduled simultaneously with other tasks. We added a

PMU to the hybrid main memory and the caches in the

processor to monitor per-task access patterns. With a number

of counter registers, it monitors the occurrence of concerned

events such as an LLC miss, a DRAM read, a DRAM write,

and a PRAM write. When an administrative task in the

hypervisor, guest OS, or any application needs to get values

from the PMU, it executes a magic instruction. The magic

instruction pauses the current simulation and calls a function

that copies values from the PMU to the predetermined

memory location within the address space of the caller task.

The simulation resumes after the call returns and the caller

can access the collected data. By collecting periodically

acquired values, the administrative task can efficiently avoid

possible memory contention among running tasks.

III. CURRENT STATUS AND NEXT STEPS

We are still in the phase of accelerating simulation speed

to prove our idea regarding resource management for the

consolidated VMs on a cloud node. Once the simulator is

ready to execute fast enough, we plan to investigate perfor-

mance bottlenecks to exhibit our motivation and to prove the

efficiency of our solution regarding resource management.

REFERENCES
[1] K. H. Park, Y. Park, W. Hwang, and K.-W. Park, “MN-

Mate: Resource Management of Manycores with DRAM and
Nonvolatile Memories,” in High Performance Computing and
Communications (HPCC), 2010 12th IEEE International Con-
ference on, Sept. 2010, pp. 24 –34.

[2] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and
S. Reinhardt, “The m5 simulator: Modeling networked sys-
tems,” Micro, IEEE, vol. 26, no. 4, pp. 52 –60, July - Aug.
2006.

[3] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hållberg, J. Högberg, F. Larsson, A. Moestedt, and
B. Werner, “Simics: A full system simulation platform,” Com-
puter, vol. 35, pp. 50–58, 2002.

[4] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood, “Multifacet’s general execution-driven multiprocessor
simulator (gems) toolset,” SIGARCH Comput. Archit. News,
vol. 33, pp. 92–99, November 2005.

[5] K.-J. L. et al., “A 90nm 1.8v 512mb diode-switch pram with
266mb/s read throughput,” Solid-State Circuits Conference,
2007. ISSCC 2007. Digest of Technical Papers. IEEE Inter-
national, pp. 472 –616, feb. 2007.

735

