
Migration Based Page Caching Algorithm for a Hybrid Main
Memory of DRAM and PRAM

Hyunchul Seok
KAIST

Daejeon, Korea
hcseok@core.kaist.ac.kr

Youngwoo Park
KAIST

Daejeon, Korea
ywpark@core.kaist.ac.kr

Kyu Ho Park
KAIST

Deajeon, Korea
kpark@ee.kaist.ac.kr

ABSTRACT
As the DRAM based main memory significantly increases
the power and cost budget of a computer system, new mem-
ory technologies such as Phase-change RAM (PRAM), Fer-
roelectric RAM (FRAM), and Magnetic RAM (MRAM) have
been proposed to replace the DRAM. Among these memo-
ries, PRAM is the most promising candidate for large scale
main memory because of its high density and low power
consumption. In previous researches, a hybrid main mem-
ory approach of DRAM and PRAM is adopted to make up
for the latency and endurance limits of PRAM. On the other
hand, large amount of a main memory is used for page cache
to hide disk access latency. Many page caching algorithms
such as LRU, LIRS, and CLOCK-Pro are developed and
show good performance, but these are only consider the
main memory with uniform access latency and unlimited
endurance. They cannot be directly adapted to the hybrid
main memory architecture with PRAM.
In this paper, we propose a new page caching algorithm

for the hybrid main memory. It is designed to overcome
the long latency and low endurance of PRAM. On the basis
of the LRU replacement algorithm, we propose page mon-
itoring and migration schemes to keep read-bound access
pages to PRAM. The experiment results show that our page
caching algorithm minimize the write access of PRAM while
maintaining cache hit ratio. The results show that we can
maximally reduce the total write access count by 48.4%.
Therefore, we can enhance the average page cache perfor-
mance and reduce the endurance problem in the hybrid main
memory.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Cache mem-
ories; D.4.2 [Operating Systems]: Storage Management—
Allocation/deallocation strategies, Main memory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

(a) On only DRAM (b) On DRAM and PRAM

Figure 1: Page Caching System Architecture

General Terms
Page cache algorithm

Keywords
Page Cache, Hybrid Main Memory, PRAM, Migration

1. INTRODUCTION
For several decades, DRAM has been the main mem-

ory of computer systems. Recent studies have shown that
DRAM based main memory significantly increases the power
and cost budget of a computer system [2]. Therefore, new
memory technologies such as Phase-change RAM (PRAM),
Ferroelectric RAM (FRAM), and Magnetic RAM (MRAM)
have been proposed to replace the DRAM.

Among these memories, PRAM is the most promising can-
didate for large scale main memory because of its high den-
sity and low power consumption. While DRAM stores each
bit of data in a separate capacitor, PRAM uses phase of
material to represent each bit. PRAM density is expected
to be much larger than DRAM (about four times). Also,
PRAM is a non-volatile memory because the phase of mate-
rial does not change after power-off. It has negligible leakage
energy regardless of the size of memory. Table 1 shows the
properties of PRAM compared to DRAM[5].

However, the access latency of PRAM is still not com-
parable to DRAM latency. It also has worn-out problem
caused by limited write endurance. In previous researches,

595

Table 1: Properties of PRAM

Attributes DRAM PRAM

Non-volatility No Yes

Cost/TB Highest Low

Read Latency 50ns 50-100ns

Write Latency 20-50ns ∼1us

Read Energy ∼0.1nJ/b ∼0.1nJ/b

Write Energy ∼0.1nJ/b ∼0.5nJ/b

Idle Power ∼1.3W/GB ∼0.05W

Endurance ∞ 108 for write

a hybrid main memory approach of DRAM and PRAM is
adopted to make up for the latency and endurance limits of
PRAM [3][8][6]. They propose several hardware and soft-
ware schemes to manage the hybrid main memory.
On the other hand, in modern computer system, large

amount of a main memory is used for page cache to hide
disk access latency, as shown in Figure 1(a). Many page
caching algorithms such as LRU, LIRS [4], and CLOCK-
Pro [7] are developed and show good performance for cur-
rent DRAM based main memory. However, previous page
caching algorithms only consider the main memory with uni-
form access latency and unlimited endurance. They cannot
be directly adapted to the hybrid main memory architecture
with DRAM and PRAM, as shown in Figure 1(b).
In this paper, we propose the new page caching algorithm

for the hybrid main memory. It is designed to overcome
the long latency and endurance problem of PRAM. On the
basis of conventional cache replacement algorithms, we pro-
pose page monitoring and migration schemes to keep read-
bound access pages to PRAM. It minimizes the write access
of PRAM while maintaining cache hit ratio. Therefore, we
can enhance the average page cache performance and reduce
the endurance problem in the hybrid main memory.
The remainder of paper is organized as follows. In Section

2 we present the design of our algorithm and we describe
page monitoring and migration strategy. The performance
evaluation results are shown in Section 3, and we briefly
discuss the future works in Section 4. Section 5 concludes
this paper.

2. THE PAGE CACHING ALGORITHM FOR
THE HYBRID MAIN MEMORY

In this section, we describe a design of a new page caching
algorithm on the hybrid main memory, which consists of
DRAM and PRAM. Although the conventional cache al-
gorithms show good performance, they cannot be directly
adapted to the hybrid main memory. Because the hybrid
main memory uses two different types of memories, it is
important to consider their properties to maximize a per-
formance and efficiency. As shown in Table 1, PRAM has
very long latency comparing to DRAM for writing a page.
If the page cache algorithm causes a lot of writes to PRAM,
the average page cache performance gets worse. In addition
to the write latency, PRAM has low endurance comparing
to DRAM. If there are many write accesses, PRAM will be
worn-out quickly. Therefore, the page cache algorithm on

Figure 3: Overview of Page Caching Algorithm

the hybrid main memory should be designed to overcome
the long latency and endurance problem of PRAM.

2.1 Overview
To satisfy the requirements, we designed the new page

caching algorithm with the conventional cache algorithm.
We add the page monitoring and migration schemes to keep
read-bound access pages to PRAM and write-bound access
pages to DRAM. Although any conventional cache replace-
ment algorithms can be adapted, we choose the LRU re-
placement algorithm which is very simple but well oper-
ated. In order to implement page monitoring and migra-
tion schemes we use four monitoring queues, which consist of
DRAM read queue, DRAM write queue, PRAM read queue,
and PRAM write queue. When one page block will access, it
contains to both the LRU list and one of the four queues by
its access pattern and the memory type where it is located.

Figure 3 shows the basic operation of our algorithm. We
use the LRU replacement algorithm for managing the page
caches. When a page fault occurs, we put the page block into
the MRU position in the LRU list. In addition, we put the
page block to the one of the monitoring queues according to
the page access type. For example, if the page block’s access
pattern is read and a selected memory page is on DRAM,
we put the page block to the DRAM read queue. If there
is no free memory when a miss occurs at page fault, the
least recently used page block is selected as the victim page,
which is the LRU replacement algorithm. At the same time
we evict the page which related to the victim page. For
example, if the victim page is write cache and resided in
PRAM, we eliminate the page from PRAM write queue.
When the page hits, the page in both the LRU list and the
monitoring queue is promoted, as shown in Figure 3.

In order to monitor the behavior of pages, we manage the
four monitoring queues. We put the information of read-
bound pages on PRAM and DRAM into two read queues
of PRAM and DRAM, respectively. Similarly, write queues
contain the information of write-bound pages of PRAM and
DRAM. When the pages are accessed, the page’s access pat-
tern is predicted by the access count and then we put the
page into the monitoring queues by its access pattern.

2.2 Migration Strategy
In case of the write-bound pages on PRAM, they cause

the performance degradation and worn-out problem because
of PRAM’s long latency and low endurance. To reduce the
bad effects of writes on PRAM, we move the write-bound
caches from PRAM to DRAM. Additionally, in case of read-

596

(a) Migration of the write-bound page (b) Migration of the read-bound page

Figure 2: Migration of Cached Pages between DRAM and PRAM

bound caches, we move them from DRAM to PRAM because
we can gather the read-bound caches to PRAM as much as
possible. As a result, we can reduce the number of writes
on PRAM and keep read-bound access pages to PRAM.
There are two migration cases as shown in Figure 2; one is

the migration of write-bound caches from PRAM to DRAM
and another is the migration of read-bound caches from
DRAM to PRAM. To determine the migration, we roughly
use a simple method. If the write access is hit and the ac-
cessed page is in the PRAM write queue, the migration is
triggered, as shown in Figure 2(a). Similarly, if the read
access is hit and the accessed page is in the DRAM read
queue, the migration is started, as shown in Figure 2(b).
In Figure 2(a), it shows that the page is migrated to the

DRAM write queue. If there is no free space in DRAM,
we have to select a victim page on DRAM. In this case, we
select the victim page from the bottom of the DRAM read
queue. In case of the physical memory view, the selected
victim page on DRAM must be removed, and the write-
bound page on PRAM is moved to the DRAM where the
victim page was located. In the DRAM write queue, this
page is put into the top of the queue. If there is no element
of the DRAM read queue when we find a victim page for
migration, we choose a victim page from the bottom of the
DRAM write queue, which means that the victim page is
the least recently used. In case of the migration of the read-
bound pages, it is similar to the case of the migration of the
write-bound pages, as shown in Figure 2(b). For selecting
a victim page, we select the bottom page of PRAM write
queue first, and if there is no pages on PRAM write queue,
we choose the bottom page of PRAM read queue. When we
remove a victim page for migration, we just remove it from
the memory, the LRU list, and the monitoring queue. The
reason why we do not change the pages between the victim
page for migration and the page which will migrate is that
it causes the additional write on PRAM.

3. EXPERIMENT
In this section, we explain the evaluation environments

Figure 4: Composition of The Hybrid Main Memory

such as the design of the hybrid main memory and perfor-
mance metrics. We use trace-driven simulation to evaluate
our hybrid cache algorithm. We then summary its perfor-
mance results which are hit ratio and write access count on
PRAM compared with the conventional page caching algo-
rithm such as LRU, LIRS, and CLOCK-Pro.

3.1 Experiment Setup
We implemented our proposed page cache algorithm based

on the LRU trace simulator because our algorithm is based
on the LRU replacement algorithm. In order to evaluate
the performance of our page cache scheme, we have to de-
fine the hybrid main memory. We assume that the hybrid
main memory consists of DRAM and PRAM, which are di-
vided by a memory address. The memory area pointed by
low memory address is for DRAM and the high section is
allocated to PRAM as shown in Figure 4. Because PRAM
density is expected to be four times larger than DRAM, the
PRAM-to-DRAM ratio is four. As the workload for per-
formance evaluation, we use two workload traces, which are
extracted from OLTP application I/O running at two large
financial institutions. These traces are made available cour-
tesy of Ken Bates from HP, Bruce McNutt from IBM, and
the Storage Performance Council [1].

3.2 Evaluation Results
We give trace-based simulation results for showing the

performance of our page caching algorithm. We compared

597

(a) Financial1 (b) Financial2

Figure 5: Hit Ratio of Proposed Algorithm and Conventional Algorithms on workloads financial

(a) Financial1 (b) Financial2

Figure 6: The total write access count of PRAM on workload financial

the experiment results with those of the conventional page
caching algorithms such as LRU, LIRS, and CLOCK-Pro.
The two traces of workloads financial are used to evaluate
the performance.

3.2.1 Hit ratio
The first evaluated result is the hit ratio, which is im-

portant to determine the performance of the page caching
algorithm. We compared the hit ratio of our page caching
algorithm to the hit ratios of the conventional page caching
algorithms. We tested it with many sizes of the main mem-
ory. The results are shown in Figure 5.
From the results of the hit ratio, the LRU replacement

algorithm shows the highest hit ratio through the whole
memory sizes. Although the hit ratio of our algorithm is
lower than that of LRU, but the results show that the hit
ratio is similar to LRU algorithm and higher than LIRS and
CLOCK-Pro. Actually, we designed our algorithm with the
basis of the LRU replacement algorithm and added the page
monitoring and migration schemes. We expected the hit ra-
tio of our algorithm is similar to that of the LRU replacement
algorithm. However, because we designed the selected vic-
tim page for migration is just eliminated, explained in the
section 2, it can cause the page faults more. As a result,
the hit ratio is lower than the LRU. Although the migration
scheme causes the degradation of the hit ratio, the hit ratio
is still larger than that of LIRS and CLOCK-Pro at small
sizes of the main memory. And at large size of the memory,
four algorithms show the same hit ratio.

3.2.2 Write access count on PRAM
Write access count on PRAM is important because it

is related of the total latency of page cache and the life-
time of PRAM. PRAM has very long latency compared to
DRAM so that the performance of page caches is degraded
if many write pages hit on PRAM. In addition, PRAM be-
comes worn-out more quickly because of its low endurance.
Therefore, in order to use a page cache on the hybrid main
memory of DRAM and PRAM, a page caching algorithm
must be able to reduce the write access count on PRAM.

In this section, we evaluated the write access count on
PRAM and compare it with the results of the conventional
algorithms. During the simulation, we counted read and
write accesses of DRAM and PRAM. Figure 6 shows the
total number of write accesses on PRAM with workloads
which are financial1 and financial2. We measured the count
number with several memory sizes. The memory size is the
total size of DRAM and PRAM. In Figure 6, the number
of accesses of four algorithms decreases as the memory size
grows. When a page fault occurs, it increases the write
access count even if a pattern of the page is read access.
Because the number of faults is decreased by increasing the
size of memory, the total number of write accesses on PRAM
decreases when the memory size increases.

When using our algorithm, we can know the total number
of write accesses is reduced compared to the conventional
page caching algorithm. We can reduce the total write ac-
cess count on PRAM by 34.4% on financial1 and 10.8% on
financial2 when we use the hybrid main memory with 500-

598

Table 2: Average Write Access Counter of DRAM
and PRAM on workload financial1

Type LRU LIRS CLOCK-Pro Proposed

DRAM 16309 16248 12839 54627

PRAM 16186 16130 13327 10631

Table 3: Average Write Access Counter of DRAM
and PRAM on workload financial2

Type LRU LIRS CLOCK-Pro Proposed

DRAM 7006 7328 4254 10562

PRAM 7018 7286 4582 6828

page sizes. We can maximally reduce the total write access
count by 48.3% on financial1 and 20.9% on financial2.
Table 2 and Table 3 show the average of write access on

DRAM and PRAM. Because we move the write-bound pages
to DRAM and keep the read-bound pages on PRAM as much
as possible, the average of write access count on DRAM is
increased and that of PRAM is decreased in both two work-
loads. We compare the gain of the latency, approximately.
If we compare the results of LRU and our proposed method
on the workload financial1, the increased average number of
writes on DRAM is 38318 and the decreased average number
of writes on PRAM is 5555. From Table 1, we choose the la-
tencies; write latency of DRAM is 50ns and write latency of
PRAM is 1us. If we calculate the latencies with these values,
the average increased write latency on DRAM is 1.9msec but
the decreased write latency on PRAM is 5.6msec so that we
can conclude that the case of our algorithm can reduce the
total latency of page cache.
Actually, PRAM can increase the total amount of a main

memory with the same area because of its high density,
compared to the amount of a main memory made by only
DRAM. It means that we can use the larger amount of
the hybrid main memory than the main memory with only
DRAM and we can easily get the higher hit ratio when us-
ing the hybrid main memory. With this advantage, we can
increase the system performance by using our page caching
algorithm. It can reduce the effect of PRAM’s disadvantages
such as long write latency and low endurance by keeping the
write-bound pages to DRAM and the read-bound pages to
PRAM as much as possible.

4. FUTURE WORKS
In the proposed migration scheme, we determined the

page migration by the page monitoring with four monitoring
queues. In this paper, we use very simple idea, described in
section 2. It is simple but well operated, shown in the exper-
iment results. However, the precise prediction to the page’s
pattern will be enhanced the performance more. Actually,
page blocks may be experienced with many read and write
access through the operations, and read and write accesses
may be repeated. Therefore, the well-organized algorithm
for predicting the page’s pattern is needed.
As the next future work, we conducted the trace-based

simulation of the performance. But in this case, we cannot
exactly evaluate the effect of PRAM’s properties. We have
to experiment how much the total performance is increased

and how much the latency is decreased when we use our
page caching algorithm on the hybrid memory.

5. CONCLUSIONS
We propose a new page caching algorithm on the hybrid

main memory. The hybrid main memory is organized by
heterogeneous types of memories, which have different prop-
erties such as the access latency, density, and endurance. In
modern computer system, large amount of a main memory
is used for page cache to hide disk access latency. Because
the conventional page caching algorithms only deal with the
uniform access latency and endurance, a new page caching
algorithm is needed. When using the PRAM for making the
hybrid main memory, the considering things are the long
write latency and low endurance of PRAM. Therefore, we
proposed the page caching algorithm with page monitoring
and migration schemes to keep read-bound access pages to
PRAM and write-bound access pages to DRAM.

The experiment results show that out algorithm can re-
duce the total number of write accesses by 48.3%, maximally.
In case of hit ratio, it shows the similar hit ratio to the con-
ventional page caching algorithms such as LRU, LIRS, and
CLOCK-Pro. It minimizes the write access of PRAM while
maintaining cache hit ratio. Therefore, we can enhance the
average page cache performance and reduce the endurance
problem in the hybrid main memory.

6. ACKNOWLEDGMENTS
The work presented in this paper was supported by MKE

(Ministry of Knowledge Economy, Republic of Korea), Project
No. 10035231-2010-01.

7. REFERENCES
[1] UMass TraceRepository,

http://traces.cs.umass.edu/index.php/Storage/Storage.

[2] L. A. Barroso and U. Holzle. The case for
energy-proportional computing. Computer,
40(12):33–37, December 2007.

[3] G. Dhiman, R. Ayoub, and T. Rosing. Pdram:a hybrid
pram and dram main memory system. In Proceedings
of the 46th Annual Design Automation Conference,
July 2009.

[4] S. Jiang and X. Zhang. Lirs: An efficient low
inter-reference recency set replacement policy to
improve buffer cache performance. In Marina Del Rey,
pages 31–42. ACM Press, 2002.

[5] K. H. Park, Y. Park, W. Hwang, and K.-W. Park.
Mn-mate: Resource management of manycores with
dram and nonvolatile memories. 12th IEEE
International Conference on HPCC, September 2010.

[6] Y. Park, S. K. Park, and K. H. Park. Linux kernel
support to exploit phase change memory. Linux
Symposium, July 2010.

[7] S. J. Performance and S. Jiang. Clock-pro: An effective
improvement of the clock replacement. In Proceedings
of USENIX Annual Technical Conference, 2005.

[8] M. K. Qureshi, V. Srinivassan, and J. A. Rivers.
Scalable high performance main memory system using
phase-change memory technology. In Proceedings of the
36th Annual International Symposium on Computer
Architecture, June 2009.

599

