
MNK: Configurable Hybrid Flash Translation Layer for Multi-Channel SSD

Gyudong Shim, Sung Kyu Park, and Kyu Ho Park

Department of Electrical Engineering
Korea Advanced Institutue of Science and Technology (KAIST)

305-701, Guseong-dong, Yuseong-gu, Daejeon, Korea
Email: {gdshim, skpark}@core.kaist.ac.kr, kpark@ee.kaist.ac.kr

Abstract—For multi-channel Solid State Disks (SSDs), hybrid
Flash Translation Layer (FTL) schemes were developed for
increasing I/O parallelism and reducing garbage collection
overhead. However, they still suffer from the high read and
write latency, block thrashing problem, and load balancing
problem. In order to overcome these problems, we design a
configurable hybrid FTL, called MNK. MNK consists of a
configurable mapping scheme, recycling log block scheme, and
load balancing scheme. By applying the configurable mapping
scheme, we can not only exploit the multi-channel architecture
of SSD for I/O parallelism but also achieve bounded read/write
latency with low garbage collection overhead by controlling
the number of modules in striping (M), the number of logical
blocks in a group (N), and the maximum allowed log blocks for
a group of N logical blocks (K), respectively. In the recycling log
block scheme, we can achieve low garbage collection overhead
by reducing erase operations. Through the load balancing
scheme, we make the erase counts of multiple modules even,
thereby increasing the lifetime of SSD. In order to evaluate the
performance of the proposed MNK scheme, we use a trace-
driven simulator. MNK finally reduces read/write latency by
up to 81% compared to previous hybrid FTL schemes such as
MCSplit and SubGroup.

Keywords-Storage Management; Hybrid Flash Translation
Layer; Multi-Channel Solid State Disk; Garbage Collection;

I. INTRODUCTION

NAND flash-based Solid State Disks (SSDs) are used as

the main storage devices in mobile and general computing

environments. An SSD consists of multiple NAND flash

memories that are connected in a multi-channel architecture

to expand the capacity and increase the throughput [1]. In

order to emulate a block-device interface that is used for

HDD, an SSD contains a special layer, called the Flash

Translation Layer (FTL). Its main roles are the address map-

ping for translating logical addresses to physical addresses

and garbage collection for reclaiming invalid pages.

Address mapping involves the translation of logical ad-

dresses of the file system to physical addresses of NAND

flash memory. It is necessary to hide the erase-before-

write characteristic of NAND flash memory. FTL stores the

mapping information in a mapping table. According to the

mapping unit size, the size of a mapping table would be

changed. If the mapping unit is a page, the mapping table

size increases to 2MB per 1GB storage considering that a

page is 2KB. On the other hand, if the mapping unit is a

block that contains several pages, the table size decreases to

32KB per 1GB storage considering that a block is 128KB.

However, it results in degrading performance. In order to

reduce the mapping table size and improve the performance,

previous FTL schemes use hybrid mapping which applies

both block-level mapping for data blocks and page-level

mapping for log blocks [2]-[9]. The log blocks are allocated

to only small portion of physical blocks due to the mapping

table size. Whenever the number of available log blocks is

less than a threshold value, it is necessary to perform the

garbage collection operation which reclaims invalid pages

for making new free log blocks.

It is important to reduce the garbage collection overhead

because the garbage collection operation, which consists

of valid page copies and block erase operations, critically

affects the overall performance. The exclusive log block

management scheme can guarantee the bounded read/write

latency by allocating a log block for only one logical

block [2]. However, it can suffer from low log block utiliza-

tion on random access patterns, called the block thrashing

problem. In order to solve this problem, the shared log

block scheme which shares all logical blocks into one log

block is presented [3], [5]. It can reduce the number of

garbage collection operations, but it can suffer from high

read/write latency. If a reclaimed log block contains valid

pages from multiple logical blocks, each data block and

log block are erased after creating a new data block for

each logical block. As a result, the garbage collection causes

extremely high read/write latency. Therefore, the hybrid log

block management scheme restricts the number of logical

blocks in a log block for achieving both advantages of the

exclusive log block management scheme and shared log

block management scheme [4], [6], [7].

It is also important for FTL to consider the multi-channel

architecture of SSD as well as reduce the garbage collection

overhead for improving the performance. In the multi-

channel architecture, we consider to increase I/O parallelism

and balance read, write, and erase operations. While MC-

Split [8] and SubGroup [9] can increase I/O parallelism

with the striping scheme, they has high garbage collection

overhead and low log block utilization which means that

the log blocks are erased with many unwritten pages. They

also show that some channels are overloaded with page copy

2012 IEEE 15th International Conference on Computational Science and Engineering

978-0-7695-4914-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICCSE.2012.68

445

and erase operations, thereby resulting in low throughput and

high read/write latency with shortened life time.

In order to achieve high I/O parallelism and low garbage

collection overhead, we propose a configurable hybrid FTL

scheme, MNK, which consists of a configurable mapping

scheme, recycling log block scheme, and load balancing

scheme. A configurable mapping scheme provides I/O par-

allelism to the hybrid log block management scheme. It can

increase I/O parallelism and achieve the bounded read/write

latency with low garbage collection overhead. A recycling

log block scheme alleviates the problem of premature erase

operations over the blocks with many free pages by reusing

log blocks with many free pages for new log block alloca-

tion. It can increase the log block utilization and significantly

reduces total erase operations by increasing the log block

utilization. Finally, a dynamic module allocation method can

balance the total erase counts and write counts over modules

The remainder of this paper is organized as follows. This

paper begins with background about the operation flow in

hybrid FTL. Section III describes the configurable MNK

mapping, recycling log block, and load balancing schemes.

The simulation results are explained in Section IV. Section V

concludes this paper and presents future work.

II. BACKGROUND

As a backgroud of our work, we describe the read and

write operations in SSD which uses a hybrid FTL, as shown

in Fig. 1. For example, write LPN 0 and 4, which represents

the write request of new logical pages 0 and 4 is issued

from the file system to SSD. The new logical page number

(LPN) 0 and 4 are translated into the physical block number

(PBN) 0 and 1 and physical page number (PPN) 0 and 1 by

a hybrid FTL. The old logical page number 0 and 4, which

were previously written in a data block, are invalidated and

new logical page number 0 and 4 are written to a log

block. If using only block-level mapping, all of the pages

in a block are updated, thereby it results in degrading the

performance. By exploiting the log block, which is managed

by page-level mapping, a hybrid FTL can efficiently manage

newly updated pages. When the read requests of logical page

number 0 and 4 are issued, new logical page number 0 and 4,

which are written in the log block, are served. This is a basic

write and read operation flow in hybrid FTL. Upon policies

of hybrid FTL, data blocks and log blocks are managed

differently such as the restriction of the associativity which

is the number of logical blocks written into a log block.

III. MNK: CONFIGURABLE HYBRID FTL

We propose a configurable hybrid FTL scheme, called

MNK, for improving the performance of multi-channel

SSDs. MNK consists of a configurable mapping scheme,

recycling log block scheme, and load balancing scheme.

From now on, we describe the detailed design and imple-

mentations of those schemes in following sub-sections.

LBN: Logical Block Number PBN: Physical Block Number
LPN: Logical Page Number PPN: Physical Page Number

X Logical Page X Block Invalid Page

Write LPN 0 & 4 from File System

Hybrid FTL

Block-level Mapping

Page-level Mapping

LBN PBN
0 0
1 1

LPN PPN
0 0
4 1

Mapping Table

NAND Flash Memory
Data Blocks

Log Blocks

0
1
2
3

4
6
7
5

PBN0 PBN1

0(1)
4(1)

PBN2

X(i) : Logical page Number X is updated for i times

Figure 1. Operation Flow in Hybrid FTL

A. Configurable Mapping Scheme

MNK has three important parameters, which are M, N,

and K. MNK manages the followings: M, which is the

number of modules in striping; N, which is the number of

logical blocks in a group; and K, which is the maximum

allowed log blocks for a group of N logical blocks, as shown

in Fig. 2 with the cases of MNK (2, 4, 8) and MNK (4,

8, 16). As M value increases, we can achieve high I/O

parallelism, but it can also make high garbage collection

overhead. This is because a logical block is distributed into

multiple channels, thus many physical blocks are rearranged

when a garbage collection operation is performed. As we

assign a large N value, we can expect higher log block

utilization because many logical blocks can share K log

blocks, thus reducing garbage collection overhead which

consists of valid page copies and block erase operations.

However, this configuration can also make high read/write

latency. As K value increases, we can achieve the opportu-

nity to allocate updated page into log blocks, but there is a

possibility to create a block thrashing problem due to low

block utilization. Therefore, it is important to control M, N,

and K values to achieve better performance.

There are many trade-offs when determining M, N, and

K. M is assigned according to the architecture of SSD, and

N and K values are determined by application patterns. If an

application is latency-sensitive, we decrease N value, which

is the number of logical blocks, thereby reducing read/write

latency. While an application requires high throughput, we

can increase N value for reducing the garbage collection

overhead. If an application has much of frequently updated

data, we increase K value, which is the maximum allowed

log blocks, to reduce the number of valid page copies

by invalidating the data in log blocks. This is the main

contribution of MNK, which can control M, N, and K values

according to application pattern and user’s requirements.

446

X Logical Page X Block Invalid Page

Write LPN 0 & 16 from File System

CH0 CH1 CH3 CH2
Data Blocks

1 0
2
4
6

3
5
7

CH0 CH1 CH3 CH2

PBN0 PBN1 PBN2 PBN3
Data Blocks

PBN9 PBN8
Log Blocks

(a) MNK (2,4,8) (b) MNK (4,8,16)

Striping : 2 Striping : 2 Striping : 4

4 LBNs
(LBN0&LBN1&
LBN2&LBN3)

4 LBNs
(LBN4&LBN5&
LBN6&LBN7)

Up to
8 Log Blocks

Up to
8 Log Blocks

In case of MNK (2,4,8) In case of MNK (4,8,16)

17 16
18
20
22

19
21
23

0(1)

PBN13 PBN12

PBN17 PBN16

PBN: Physical Block Number

PBN11 PBN10
16(1)

PBN15 PBN14

PBN19 PBN18

LBN: Logical Block Number

Log Blocks

Up to
16 Log Blocks

PBN9 PBN8
16(1) 0(1)

PBN13 PBN12

PBN17 PBN16

PBN11 PBN10

PBN15 PBN14

PBN19 PBN18

1 0
4
8

12
5
9

13

3 2
6

10
14

7
11
15

PBN0 PBN1 PBN2 PBN3

8 LBNs
(LBN0&LBN1&LBN2&LBN3&
LBN4&LBN5&LBN6&LBN7)

9 8
10
12
14

11
13
15

PBN4 PBN5 PBN6 PBN7
25 24

26
28
30

27
29
31

PBN21 PBN20 PBN23 PBN22 PBN21 PBN20 PBN23 PBN22

17 16
20
24
28

21
25
29

19 18
22
26
30

23
27
31

PBN4 PBN5 PBN6 PBN7

X(i) : Logical page Number X is updated for i times

Figure 2. MNK Layout of (2,4,8) and (4,8,16)

Figure 2 shows the layout of MNK mapping of (2,4,8)

and MNK mapping of (4,8,16). MNK mapping of (2,4,8) has

two striping levels, four logical blocks in a group, and eight

maximum allowed log blocks for a group of four logical

blocks. Therefore, the logical block number (LBN) 0, 1, 2,

and 3 can make a group with two striping levels and share

eight log blocks. Similar to MNK mapping of (2,4,8), MNK

mapping of (4,8,16) has four striping levels, eight logical

blocks in a group, and sixteen maximum allowed log blocks

for a group of four logical blocks. In these configurations, we

show the scenario when when the logical pages 0 and 16 are

updated and written into log blocks. When logical page 0 is

updated, logical page 0 in the data block group is invalidated,

and updated logical page 0 is written to the log block group.

Then, logical page 16 is also a similar process with logical

page 0. These invalidated values are reclaimed by garbage

collection operations. Because we allocate pages in the log

block group by considering a multi-channel architecture, we

can increase I/O parallelism in the data block group as well

as that in the log block group.

B. Recycling Log Block Scheme

In MNK, the garbage collection operation is performed

whenever K log blocks are fully written by updated logical

pages or the number of free blocks is less than a threshold

value. When selecting a victim during a garbage collection

operation, MNK chooses a group of logical blocks to be

Data
Block

Log
Block

0
1
2
3

PBN0
1(1)

PBN1

Data
Block

0
1(1)
2
3

PBN3

PBN0, PBN1
are erased

Unwritten 3 pages

Data
Block

Log
Block

4
5
6
7

PBN2
5(1)
6(1)

PBN1

Valid Page Invalid Page Free Page Block
PBN: Physical Block Number X(i) : Logical Page Number X is updated for i times

(a) Previous Garbage Collection Operation

Data
Block

Log
Block

0
1
2
3

PBN0
1(1)

PBN1

Data
Block

0
1(1)
2
3

PBN3

PBN0
Is erased

Data
Block

Recycled
Log Block

4
5
6
7

PBN2
1(1)
5(1)
6(1)

PBN1

(b) Recycling Log Block Scheme

Figure 3. Example of Recycling Log Block Scheme

reclaimed from the LRU list of accessed logical groups.

The oldest logical group is chosen as a victim because it is

not likely to be updated immediately. The victim selection

is done by only O(1) complexity, while ASA [11] chooses

a victim block after comparing the cost of each block to

be reclaimed from entire log blocks. This process requires

additional meta-data of log blocks in memory.

During a garbage collection operation, MNK recycles log

blocks in order to gain better log block utilization. We

found that many log blocks with many unwritten pages are

erased during a garbage collection operation in hybrid FTLs

with exclusive log block allocation, such as BAST, MCSplit,

and SubGroup. This problem not only reduces the expected

lifetime of blocks but also increases the read/write latency

of garbage collection operation. Therefore, we propose the

recycling log block scheme for better log block utilization

and reduce the number of erase operations.

As shown in Figure 3(a) which is the case of BAST,

SubGroup, and MCSplit, PBN1 with many unwritten pages

is reclaimed by garbage collection. PBN1 has three free

pages, but it is erased in order to obtain a free block for log

block allocation for logical block 1, which contains logical

pages from 4 to 7. We assume the total log block is limited to

one. A write request of logical pages 5 and 6 triggers garbage

collection to obtain a new log block for the log block in case

of BAST, SubGroup, and MCSplit. Since PBN1 has non-

zero offset logical pages in a block, it should be reclaimed by

a garbage collection. During the garbage collection, PBN0

and PBN1 are erased after reconstructing new data of PBN3.

In MNK, we can reduce the erase count and increase log

block utilization by recycling log block PBN1 instead of

erasing it. The physical block PBN1 is reallocated into the

next log block for logical block 1, as shown in Figure 3(b).

Since the update logical page 5 is not zero offset within

the logical block, the log block cannot be switched to a data

block. The log block for logical block 1 should be reclaimed

by a garbage collection operation later. Therefore, it is safe

447

to allocate the recycled log block for the random access

pattern. However, if a recycled log block is allocated to a

sequential log block, the log block cannot be switched to

data blocks. For this reason, the recycled log block should

be allocated with a random access pattern only. Because the

logical pages have non-zero offset with a random pattern, it

is safe to allocate PBN1 as the log block with three pages

that are larger than the two pages to be written.

However, it is not always good to operate the recycling

log block scheme. Therefore, we exploit a threshold value,

RECYCLE TH. If RECYCLE TH is 0.6, log blocks whose

written pages are less than 60% are recycled. If RECY-

CLE TH is set to 0, there is no recycled log block, while

any log blocks with unwritten pages can be recycled if

RECYCLE TH is set to 1. This threshold value will be

determined by various experiments in Section IV.

C. Load Balancing Scheme

Load-balancing over multiple modules is crucial because

it influences the lifetime and overall performance of SSDs.

In order to maximize the lifetime of SSDs, each module

should be erased evenly. A skewed distribution of erase

operations over modules can reduce the expected time

considerably. If the limit of erase counts over a module

is set by a value, the module cannot be updated anymore

after the erase count over the module reaches the value.

The performance is also affected by load-balancing of valid

pages over modules. If accessed data are positioned in a

specific module, the module can be a bottleneck and other

modules are under-utilized.

In order to achieve load-balancing on MNK, MNK applies

compensation schemes of ASA [11] to log block allocation

with a best effort policy. When a log block is allocated,

the block from a module is allocated to compensate valid

pages and erase counts considering the sequential/random

pattern. In addition, the victim block in a garbage collection

is chosen from a specific module to be compensated by the

LRU list of accessed logical groups. Log blocks in MNK

can be classified into hot or cold blocks according to the

random/sequential patterns. Since a large-sized sequential

write has cold pages, it will increase the valid pages in a

module. On the other hand, small-sized random log blocks

would cause a garbage collection operation, which increases

the erase count of the module. Therefore, MNK allocates

log blocks from modules dynamically, considering the erase

count over modules and the number of free blocks in

a module. Since counting every valid page per module

triggers frequent updates on meta-data, MNK approximates

the number of valid pages in a module by the number of

free blocks in a module.

When a log block with sequential pattern is allocated,

the module with the least free blocks is chosen. When a

log block with random pattern is allocated, the module with

the least erase count is chosen. Since MNK allocates M log

0
0(2)

1
0(4)

0(1)

0(3)

2
0(5)

0(6)

PBN0 PBN1 PBN2 PBN3

module 0 (m0) module 1 (m1) module 2 (m2) module 3 (m3)

Log Blocks in MNK (2,2,4)

` (m0, m1)
of Erase

` (m0, m1)
of Free Block

(m2, m3)
of Free Block

(m2, m3)
of Erase

Module Group List by
Erase Count

Module Group List by
Free Block Count

X Logical Page X Block Invalid Page

Sequence of Write LPN from File System: 0, 0, 0, 1, 2, 0, 0, 0

PBN: Physical Block Number X(i) : Logical Page Number X is updated for i times

Figure 4. Example of MNK Load Balancing Scheme

blocks from M modules as a group for striping, the modules

are grouped statically. If there are L modules, there are L/M

module groups. The load balancing scheme is applied at

the module group level. For managing the number of free

blocks or erase count per module group, MNK manages two

lists which are ordered by the number of free block or erase

count. The ties are resolved by the last access time.

Examples of load balancing schemes are shown in Fig-

ure 4. The logical pages are updated by a sequence of 0,

0, 0, 0, 1, 2, 0, 0, and 0. M, N, and K values are set to 2,

2, and 4, respectively. The log block allocation occurs just

before the first and the ninth write. Since the first logical

page 0 is regarded as a random pattern due to the small

size, the log blocks for logical block group 0, which consists

of logical block 0 and 1, are allocated by the modules 0

and 1. Whenever allocation or collection occurs, the list

is updated by moving the allocated module group into the

last position of the same key value, the erase count or free

blocks. When log blocks with a random pattern are allocated,

the two lists are updated simultaneously. When log blocks

with sequential pattern are allocated, only the list with free

blocks is updated. When a garbage collection occurs, the

two lists are updated according to free blocks and the erase

count. The compensation of the erase count and the number

of free blocks is triggered at the M block level because MNK

allocates or reclaims log blocks with M blocks.

IV. EVALUATION

In this section, we describe the evaluation environment

such as the simulator, trace characteristics, and performance

metrics and the results compared to previous hybrid FTLs.

A. Evaluation Environment

The performance of MNK is evaluated by a trace driven

simulator. The simulator supports a write buffer, various FTL

schemes, and multiple NAND flash memories. A write buffer

is managed by block-level LRU. The simulator can configure

448

8.8

6.8

5.2

1.3 1.1 1.0
1.6 1.5 1.3

0

2

4

6

8

10

(8,16) (16,32) (32,64) (8,16) (16,32) (32,64) (8,16) (16,32) (32,64)

GENERAL OLTP SYSMARK

Er
as

e
C

ou
nt

 (1
05

)

Trace and (N,K)

(a) Erase Count

26.0

21.2

16.5

1.7 1.4 1.1
4.6 4.4 4.0

0

5

10

15

20

25

30

(8,16) (16,32) (32,64) (8,16) (16,32) (32,64) (8,16) (16,32) (32,64)

GENERAL OLTP SYSMARK

Va
lid

 P
ag

e
C

op
y

(1
06

)

Trace and (N,K)

(b) Valid Page Copy

70.9
62.5

51.9

0.3 0.3 0.4 2.4 2.3 2.2
0

20

40

60

80

(8,16) (16,32) (32,64) (8,16) (16,32) (32,64) (8,16) (16,32) (32,64)

GENERAL OLTP SYSMARK

Av
er

ag
e

W
rit

e
La

te
nr

y
(m

s)

Trace and (N,K)

(c) Average Write Latency

86.4

73.4

53.0

0.1 0.2 0.4 2.6 2.5 2.4
0

20

40

60

80

100

(8,16) (16,32) (32,64) (8,16) (16,32) (32,64) (8,16) (16,32) (32,64)

GENERAL OLTP SYSMARK

Av
er

ag
e

R
ea

d
La

te
nr

y
(m

s)

Trace and (N,K)

(d) Average Read Latency

Figure 5. Performance Effect according to N and K Parameters (M is set to 8 for full I/O parallelism)

three FTL schemes: MNK, SubGroup, and MCSplit. Mul-

tiple NAND flash memories construct in 8-channel 4-way,

which is used in current commercial SSDs.

We used three workload traces which are OLTP, GEN-

ERAL, and SYSMARK traces [13], [14]. The OLTP trace

was extracted from OLTP applications running at a large

financial institution. This trace had a large number of random

writes whose sizes were about 5.3KB. It was made available

courtesy of Ken Bates from HP, Bruce McNutt from IBM,

and the Storage Performance Council. GENERAL and SYS-

MARK traces were obtained from a Microsoft Windows-

based laptop computer. These traces represent the workload

of typical PC usage scenarios. GENERAL trace was ob-

tained from a 5-day long general PC usage and SYSMARK

trace was collected from SYSmark 2007 Preview.

We first investigated the effect of M, N, and K and

recycling threshold value, RECYCLE TH. After that, we

compared the overall performance of MNK with that of

MCSplit and SubGroup. We evaluate the erase count, valid

page copies, average write latency, and average read latency

as the performance metrics. We also show the erase counts

in all modules for identifying the load balancing effect.

B. Effect of Parameters

We provide the evaluation results according to parameters

which are M, N, and K values and RECYCLE TH. From

the results, we can determine appropriate values that give the

best performance for comparison with other FTL schemes.

1) Result with M, N, and K Values: The first experiment

showed performance effect according to M, N, and K

parameters. We set M to 8 in order to achieve full I/O

parallelism by exploiting full channels (8-channels) in the

simulator.

Figure 5(a) and 5(b) represent a garbage collection over-

head that consists of the erase counts and the number

of valid page copies. The results show that the garbage

collection overhead is reduced as N and K values increase.

In GENERAL trace, the erase count is reduced by up to

40.9% and the number of valid page copies is reduced by up

to 36.5%. This is because the higher N and K values become

the higher log block utilization, thus making a small number

of garbage collection operations. It can result in improving

the performance of SSD.

Figure 5(c) and 5(d) describe the average write and read

latencies. In GENERAL and SYSMARK traces, both read

and write latencies are reduced by up to 18.5% as N and

K values increase. This is because the garbage collection

overhead is reduced. In OLTP trace, however, read and

write latencies are increased as N and K values increase.

Because the higher N and K values have more logical

blocks for garbage collection, the read and write latencies

can be increased in this case. For some request patterns,

there is a tradeoff between garbage collection overhead

and performance. Therefore, it is important to determine

appropriate N and K values according to the pattern of

applications.

449

8.8

7.0
6.5 6.3 6.2 6.2 6.2

1.3 1.2 1.2 1.2 1.2 1.2 1.2

1.6 1.4 1.3 1.3 1.3 1.3 1.3

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6

Er
as

e
C

ou
nt

 (1
05

)

RECYCLE_TH

GENERAL
OLTP
SYSMARK

(a) Erase Count

26.0 26.3 26.7 27.0 27.3 27.7 28.1

1.7 1.7 1.8 1.8 1.8 1.8 1.8
4.6 4.7 4.7 4.8 4.8 4.8 4.8

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6

Va
lid

 P
ag

e
C

op
y

(1
06

)

RECYCLE_TH

GENERAL
OLTP
SYSMARK

(b) Valid Page Copy

70.9
79.1

89.3

105.3
112.3

132.6
146.2

0.3 0.3 0.3 0.3 0.3 0.3 0.3
2.4 2.4 2.4 2.4 2.4 2.4 2.4

0

40

80

120

160

0 0.1 0.2 0.3 0.4 0.5 0.6Av
er

ag
e

W
rit

e
La

te
nc

y
(m

s)

RECYCLE_TH

GENERAL
OLTP
SYSMARK

(c) Average Write Latency

53.0 51.2 50.0

56.8 58.8
63.0 64.3

0.3 0.3 0.3 0.3 0.3 0.3 0.3
2.4 2.4 2.4 2.4 2.4 2.4 2.4

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6Av
er

ag
e

R
ea

d
La

te
nc

y
(m

s)

RECYCLE_TH

GENERAL
OLTP
SYSMARK

(d) Average Read Latency

Figure 6. Performance Effect according to RECYCLE TH ((M,N,K) = (8,32,64))

2) Result with RECYCLE TH Values: The effect of the

recycling log block scheme is given according to various

RECYCLE THs from 0.1 to 0.6. We set M, N, and K values

to (8, 32, 64) which shows low garbage collection overhead.

Figure 6(a) and 6(b) show garbage collection overhead.

As RECYCLE TH increases, the erase count is reduced, but

the valid page copies are increased. Although the recycling

log block scheme needs to copy more valid pages, it can

reduce the erase count by increasing log block utilization.

If RECYCLE TH is 0.1, the total erase count is reduced by

21% with 1% additional valid page copy overhead.

Figure 6(c) and 6(d) represent the average read/write la-

tency. From the results, additional page copy makes consid-

erable read/write latency penalties in GENERAL trace. As

RECYCLE TH becomes larger, average read/write latency

is increased. In GENERAL trace, there are heavy requests

and queuing delays for garbage collection. A small increase

of valid page copies causes a high read/write latency.

In OLTP trace, the recycling log block scheme cannot

critically affect the performance. This is because the log

block utilization in this trace is high; thus, it cannot make

additional valid page copy overhead. The recycling log block

scheme is efficient when the log block utilization is low.

C. Performance Compared with Hybrid FTLs

We provide the evaluation results compared with previous

hybrid FTLs which are MCSplit and SubGroup. We first

evaluated the erase count, valid page copies, average write

latency, and average read latency, which represent the overall

performance of FTL. We then provide the erase counts of

all modules for showing the load balancing effect.

1) Overall Performance: In order to compare the overall

performance with MCSplit and SubGroup, we set M, N,

and K values and RECYCLE TH to (8, 32, 64) and 0.1,

respectively. The configuration of (8, 32, 64) can achieve

low erase count and a low number of valid page copies and

reduce the average write and read latency. The reason why

we set RECYCLE TH to 0.1 is that this configuration shows

low garbage collection overhead with negligible valid page

copy overhead.

Figure 7(a) and 7(b) show the erase count and valid page

copies. The evaluation results show that MNK has fewer

erase counts and a smaller number of valid page copies than

those of MCSplit and SubGroup. This is because MNK can

achieve the high log block utilization with high N and K

values. MNK can also reduce the erase count by the log

block recycling scheme. MNK provides a lower erase count

by up to 43% and decreases valid page copies by up to 66%

compared to those of MCSplit and SubGroup.

Figure 7(c) and 7(d) represent the average read/write

latency. The results show that MNK can reduce the average

read/write latency compared to those of MCSplit and Sub-

group. This is because MNK can increase I/O parallelism

and reduce the erase count and number of valid page copies.

In GENERAL trace, MNK especially can reduce the write

latency by up to 81% and the read latency by up to 84%.

450

7.3
8.3

4.7

1.4 1.6 1.0 1.4 1.6 1.2

0

2

4

6

8

10

M
C

S
pl

it

S
ub

G
ro

up

M
N

K

M
C

S
pl

it

S
ub

G
ro

up

M
N

K

M
C

S
pl

it

S
ub

G
ro

up

M
N

K

GENERAL OLTP SYSMARK

Er
as

e
C

ou
nt

 (1
05

)

Trace and (N,K)

(a) Erase Count

19.5
20.2

16.5

2.6 3.2
1.1

3.9 4.2 4.0

0

5

10

15

20

25

M
C

S
pl

it

S
ub

G
ro

up

M
N

K

M
C

S
pl

it

S
ub

G
ro

up

M
N

K

M
C

S
pl

it

S
ub

G
ro

up

M
N

K

GENERAL OLTP SYSMARK

Li
ve

 P
ag

e
C

op
y

(1
06

)

Trace and (N,K)

(b) Valid Page Copy

110.3

267.7

51.9

0.7 0.4 0.4 2.6 2.8 2.2
0

50

100

150

200

250

300

M
C

S
pl

it

S
ub

G
ro

up

M
N

K

M
C

S
pl

it

S
ub

G
ro

up

M
N

K

M
C

S
pl

it

S
ub

G
ro

up

M
N

K

GENERAL OLTP SYSMARK

Av
er

ag
e

W
rit

e
La

te
nc

y
(m

s)

Trace and (N,K)

(c) Average Write Latency

139.5

314.7

51.2
0.3 0.2 0.3 2.8 2.9 2.4

0
50

100
150
200
250
300
350

M
C

S
pl

it

S
ub

G
ro

up

M
N

K

M
C

S
pl

it

S
ub

G
ro

up

M
N

K

M
C

S
pl

it

S
ub

G
ro

up

M
N

K

GENERAL OLTP SYSMARK

Av
er

ag
e

R
ea

d
La

te
nc

y
(m

s)

Trace and (N,K)

(d) Average Read Latency

Figure 7. Overall Performance compared to MCSplit & SubGroup ((M,N,K,RECYCLE TH) = (8,32,64,0.1))

By comparing the previous hybrid FTL schemes of MC-

Split and Subgroup, we show MNK reduces the garbage

collection overhead which contains the erase count and the

number of valid page copies and write and read latencies

by exploiting the configurable mapping scheme and the

recycling log block scheme. However, there is a tradeoff

between garbage collection overhead and latency in some

request patterns. When N and K values increase, these can

reduce the garbage collection overhead, but it can show the

highest latency problem due to the large number of logical

blocks, N. Therefore, it is important to determine M, N, K,

and RECYCLE TH. Although we set the same parameters

in this evaluation, MNK performs better if we change these

values according to the pattern.

2) Load Balancing: From now on, we evaluate the erase

count of modules of SSD to show the load balancing

effect of MNK compared to MCSplit and SubGroup as

the final evaluation. For this evaluation, we also set M, N,

and K values and RECYCLE TH to (8, 32, 64) and 0.1,

respectively. Figure 8 shows the evaluation result of the

load balancing effect. Because the load balancing scheme

is performed in module groups, the erase count of modules

that have the same key (module number % 4) is the same.

In Figure 8, the x-axis means the module number from 1 to

32 and the y-axis represents the erase count of each module.

As shown in Figure 8, MNK has an even distribution

of the erase count over multiple modules. MNK also has

the lowest erase count in all traces of GENERAL, OLTP,

and SYSMARK traces. This means that the load balancing

scheme of MNK is performed well; thus, it can maximize the

lifetime and overall performance of SSDs. However, in the

cases of MCSplit and SubGroup which use static allocation,

some modules have higher erase counts than other modules.

This means that those modules cannot be updated anymore.

The reason is the SubGroup separate hot group and cold

group. This hot group makes a higher erase count.

V. CONCLUSION

We presented a configurable hybrid FTL, called MNK,

which exploits the configurable mapping scheme to bound

the read/write latency and increase I/O parallelism. We also

proposed a recycling log block scheme that addresses the

problem of low block utilization during exclusive log blocks.

Finally, we make erase counts of multiple modules, even

through the load balancing scheme. Therefore, performance

and lifetime of SSD are improved. MNK provides better

performance than MCSplit and SubGroup by up to 81%.

For future work, we will dynamically change parameters

according to the request pattern. We will also integrate MNK

scheme with the write buffer management scheme to achieve

a synergetic effect. By considering both FTL and the write

buffer, we can highly improve performance of SSD.

ACKNOWLEDGMENT

The work presented in this paper was supported by MKE

(Ministry of Knowledge Economy, Republic of Korea),

Project No. 10035231-2010-01.

451

10000
20000
30000
40000
50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32Er
as

e
C

ou
nt

 MCSplit SubGroup MNK

Module Number

(a) GENERAL

3000
3300
3600
3900
4200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32Er
as

e
C

ou
nt

 MCSplit SubGroup MNK

Module Number

(b) OLTP

2000
3000
4000
5000
6000
7000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32Er
as

e
C

ou
nt

 MCSplit SubGroup MNK

Module Number

(c) SYSMARK

Figure 8. Load Balancing Effect compared to MCSplit & SubGroup ((M,N,K,RECYCLE TH) = (8,32,64,0.1))

REFERENCES

[1] Y. J. Seong, E. H. Nam, J. H. Yoon, H. Kim, J.-Y. Choi,
S. Lee, Y. H. Bae, J. Lee, Y. Cho, and S. L. Min, Hydra:
A Block-Mapped Parallel Flash Memory Solid-State Disk
Architecture, IEEE Transactions on Computers, vol. 59, no.
7, pp. 905-921, July, 2010.

[2] J. Kim, J. M. Kim, S.H. Noh, S. L. Min, and Y. Cho, A Space-
Efficient Flash Translation Layer for CompactFlash Systems,
IEEE Transactions on Consumer Electronics, vol. 48, no. 2,
pp. 366-375, 2002.

[3] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and
H.-J. Song, A Log Buffer-Based Flash Translation Layer us-
ing Fully-Associative Sector Translation, ACM Transactions
on Embedded Computing Systems, vol. 6, no. 3, Jul., 2007.

[4] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, and J.-S. Kim,
A Reconfigurable FTL (Flash Translation Layer) Architecture
for NAND Flash-Based Applications, ACM Transactions on
Embedded Computing Systems, vol. 7, no. 4, pp. 1-23, Jul.,
2008.

[5] S. Lee, D. Shin, Y.-J. Kim, and J. Kim, LAST: Locality-Aware
Sector Translation for NAND Flash Memory-Based Storage
Systems, ACM Operating System Review, vol. 42, no. 6, pp.
36-42, Oct., 2008.

[6] H. Cho, D. Shin, and Y. I. Eom, KAST: K-Associative Sector
Translation for NAND Flash Memory in Real-Time Systems,
Proc. the Conference on Design, Automation and Test in
Europe (DATE ’09), pp. 507-512, 2009.

[7] D. Koo and D. Shin, Adaptive Log Block Mapping Scheme
for Log Buffer-based FTL (Flash Translation Layer), Proc.
International Workshop on Software Support for Portable
Storage (IWSSPS ’09), 2009.

[8] J. H. Kim, S. H. Jung, and Y. H. Song, Cost and Perfor-
mance Analysis of NAND Mapping Algorithms in Shared-
Bus Multi-Chip Configuration, Proc. International Workshop
on Software Support for Portable Storage (IWSSPS ’08),
2008.

[9] J. Park, G.-H. Park, C. Weems, and S. Kim, Sub-Grouped Su-
perblock Management for High-Performance Flash Storages,
IEICE Electronics Express, vol. 6, no. 6, pp. 297-303, 2009.

[10] J.-Y. Shin, Z.-L. Xia, N.-Y. Xu, R. Gao, X.-F. Cai, S. Maeng,
and F.-H. Hsu, FTL Design Exploration in Reconfigurable
High-Performance SSD for Server Applications, Proc. the
23rd International Conference on Supercomputing (ICS ’09),
pp. 338-349, June, 2009.

[11] L.-P. Chang and T.-W. Kuo, An Adaptive Striping Archi-
tecture for Flash Memory Storage Systems of Embedded
Systems, Proc. the 8th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS ’02), Sep., 2002.

[12] A. Gupta, Y. Kim, and B. Urgaonkar, DFTL: A Flash Trans-
lation Layer Employing Demand-Based Selective Caching of
Page-Level Address Mappings, Proc. the 14th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’09), 2009.

[13] Y.-G. Lee, D. Jung, D. Kang, and J.-S. Kim, μ-FTL: A
Memory-Efficient Flash Translation Layer Supporting Multi-
ple Mapping Granularities, Proc. the 8th ACM International
Conference on Embedded Software (EMSOFT ’08), pp. 21-
30, 2008.

[14] OLTP Trace from UMass Trace Repository,
http://traces.cs.umass.edu/index.php/Storage/Storage.

452

