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Abstract—There can be many types of heterogeneous com-
puting systems, and the most useful one is the CPU and GPU
computing system. In this system, we try to run QR decompo-
sition, which expresses a standard real matrix as a production
of two matrices. For a tiled QR decomposition algorithm, which
is a parallelized version of QR decomposition, because of the
heterogeneity of computing devices and communication cost, the
way that each tile is distributed into which device is the main
issue of tiled QR decomposition. The goal of this study is to
optimize the tile distribution and the tiled QR decomposition
operation mathematically, depending on the given system. We
select the main computing device for the main steps of the
algorithm, optimize the number of devices, and optimize the tile
distribution among the devices using a distribution guide array.
Our evaluation confirms that our method has good scalability and
the optimization process maximizes the tiled QR decomposition
performance.

I. INTRODUCTION

As time goes on, the performance and parallelism of com-

puting devices, such as CPU, GPU, Xeon Phi [1], or other

types of devices, are improving faster and faster. According

to this trend, it is very good to use heterogeneous devices

together to solve a single problem that needs fast computing

speed and a highly parallel computing environment.

There can be many types of heterogeneous computing

systems, and our work focuses on a CPU and GPU (or

GPGPU) heterogeneous computing system. Fig. 1 shows the

simplified architecture of the system, with the GPU based

on CUDA [2], [3] for our target system, which is a parallel

computing architecture of NVIDIA GPUs. There are one or

several cores within a single CPU, and all the CPUs can easily

share data in their memory, including the main memory and

disk. In GPUs, there are hundreds or thousands of cores within

a single GPU, and each GPU can access data only in its own

local memory. Of course, GPU cores within a single GPU can

share their data using the local memory.

In terms of computing environment, the operation of each

GPU is subordinate to the operation of a CPU. To run part of

a program of a GPU, also known as the kernel, an invocation

from the CPU is necessary. The CPU first transfers needed data

to the GPU and then invokes the GPU’s operation; the result

will be transferred from the GPU to the CPU. Additionally,

the operation on the GPU is not preemptive. To run multiple

kernels on a single GPU simultaneously, other kernels must
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Fig. 1. CPU and GPU heterogeneous computing system architecture

wait until the current kernel finishes its current processing on

the GPU.

This system has two major properties that have to be

considered for better operation. The first one is the different

computation environment of each computing device. Because

of different parameters, such as the core architecture, clock

speed or memory bandwidth, some jobs can be calculated

faster on the CPU and others on the GPU. Numbers of parallel

cores of GPU need jobs to be able to be computed in parallel,

and CPU cores are good for some jobs with low parallelism or

more memory dependent jobs. The second major property is

the need of a memory copy. Since the CPU cannot access

the GPU’s memory directly and vice versa, there must be

a memory copy to share some data between the CPU and

GPU or among GPUs through PCI express communication.

If there are too many data to share during processing, the

communication cost can be a bottleneck, and the utilization of

both the CPU and GPU might be low.

Our target application is a QR decomposition operation. QR

decomposition, also known as QR factorization, expresses a

standard real matrix as a production of two matrices, Q and R,

where Q is an orthogonal matrix and R is an upper triangular

matrix. This decomposition operation is the basis for solving

some systems of linear equations, so it is widely used in data

analysis of various domains.

There are several types of QR decomposition, such as the

Householder or Cholesky methods. Our work mainly relies on

the Householder reflections method [4], because it is efficient

and well-matching with parallel computations. From the left

side to the right side, reflectors are computed, and each

element on the under-diagonal part of each column vector is

reduced by the Householder matrix.

To parallelize the QR decomposition, using a tiled QR
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decomposition algorithm [5], [6] is usual. In the algorithm, a

given matrix is divided into several tiles, and groups of tiles are

distributed into each computing device to operate parallelized

QR decomposition. During the distribution, because of the

heterogeneity of computing devices and communication cost,

the way that each tile is distributed into which device is the

main issue of tiled QR decomposition.

The goal of this study is to optimize tile distribution and the

tiled QR decomposition operation mathematically, depending

on the given system. The main contributions of our work are

as follows.

• We divide the QR decomposition of a single tile into

several steps, depending on the processing properties and

operate each step on an appropriate computing device.

During this process, we select the main computing device,

which operates the main steps of the decomposition.

• We optimize the number of devices that participate in the

tiled QR decomposition. Depending on the input matrix,

some of the available computing devices may not be used.

For optimization, the processing speed of each device and

the communication cost among the devices are considered

to calculate the time tradeoff.

• For tile distribution, we construct a distribution guide

array, which contains the indications of ”which tiles are

on which device”. To build this array, the processing

speed and parallelism of each device are considered.

The remaining part of this paper is organized as following.

In Section II, we explain more detail of QR decomposition and

tiled QR decomposition. In Section III, we introduce our moti-

vations. Our contributions are explained mainly in Section IV.

Section V and Section VI are about the implementation and

evaluation. In Section VII, some related works are introduced.

Finally, we conclude our work in Section VIII.

II. BACKGROUND

A. QR decomposition

QR decomposition, or QR factorization, is a matrix decom-

position into a product of two matrices, see Equation 1.

A = QR. (1)

After QR decomposition, given matrix A will be decomposed

into two matrices, Q and R. The matrix Q is an orthogonal

matrix, which satisfies QT = Q−1, or QTQ = QQT = I .

The matrix R is an upper triangular matrix, which has non-

zero elements only at the upper right part, and zeroes for lower

left part.

The QR decomposition is usually used to find solution of

matrix equation, Ax = b, where x and b are column vectors.

After QR decomposition, the equation can be written as the

Equations 2 and 3.

QRx = b, (2)

QTQRx = Rx = QT b. (3)

Here, we can find the solution x easily, because R is an upper

triangular matrix.

Algorithm 1 Householder QR decomposition

1: procedure HOUSEHOLDER QR

2: k ← 0
3: while k < MatrixColSize do
4: �ak ← (a1k, ..., ank)

T

5: �ek ← (0, ..., 0, 1, 0, ..., 0)T � 1 for k-th element

6: αk ← −sgn(akk)|| �ak||
7:

8: �uk ← �ak + αk �ek
9: �vk ← �uk/|| �uk||

10:

11: Qk = I − 2 �vk( �vk)
T

12: A← QkA
13:

14: k ← k + 1
15: end while
16:

17: Q← QT
1 Q

T
2 ...Q

T
n

18: R← QnQn−1...Q1A = QTA
19: end procedure

One of the most useful methods for QR decomposition

is the Householder reflections method, introduced in Algo-

rithm 1 [4]. This algorithm uses orthogonal transformations to

reflect the matrix columns through hyper planes: the House-

holder matrices. They are built from Householder reflectors,

defining vectors of the projection. This algorithm computes the

matrix column by column, starting from the left. Reflectors are

computed and the column’s under-diagonal elements reduced

(zeroed) by the Householder matrix. The final matrix is the R
matrix, and then the Q matrix can be calculated as a product

of all Householder matrices needed to reach the result.

B. Tiled QR decomposition

To parallelize QR decomposition, tiled QR decomposition

methods are proposed [5], [6]. A given matrix is divided into

several square or rectangle tiles, and a group of several tiles

are processed on a processor or computing device, depending

on the computing environment. For a tiled QR decomposition

operation, there are four steps in the process.

1) Triangulation: In the triangulation step, also known as

GEQRT, the QR decomposition operation is done for a single

tile (Equation 4, with t means a tile), and elements of the

result matrix R will substitute for elements of the processed

tile (Equation 5, the notation ← means replacement).

At = QtRt, (4)

At ← Rt. (5)

2) Update for triangulation: The update for triangulation

step is also known as UNMQR. After triangulation, the

resulting matrix Q should be multiplied by the right side tiles

for the next operation (Equation 6).

At ← QtAt. (6)
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Fig. 2. Process of tiled QR decomposition of 3 by 3 tiles

3) Elimination: The elimination step is also known as

TSQRT, or TTQRT. At the end of whole computation, the

lower left part tiles should be zeroed, and in the elimination

process it is done as shown in Equations 7 and 8 (the

notations t1 and t2 mean two tiles on a same column). There

are two types of elimination: triangle-on-top-of-triangle (TT)

elimination and triangle-on-top-of-square (TS) elimination. TT

elimination needs two triangulated tiles, and TS elimination

needs one triangulated tiled and one non-triangulated tile. Both

cases have same amount of arithmetic operation, and two tiles

should exist on the same column of tiles.[
At1

At2

]
=

[
Qt1 Qt2

] [ Rt1

0

]
, (7)

[
At1

At2

]
←

[
Rt1

0

]
. (8)

4) Update for elimination: After elimination, the result

matrices Q1 and Q2 should be multiplied to the right side tiles

for the next operation. This step is the update for elimination,

which is also known as TSMQR or TTMQR, depending on

the elimination process.[
At1

At2

]
← [

Qt1 Qt2

] [ At1

At2

]
. (9)

Fig. 3 shows a part of a directed acyclic graph (DAG)

for the tiled QR operation. In the DAG, T, E, UT and

UE denote triangulation, elimination, update for triangulation,

and update for elimination, respectively. Each triangulation

process leads the updating for rightward tiles and elimination

for downward tiles, and each elimination process leads the

updating for rightward tiles and triangulation for the next

column tiles. Fig. 2 shows the tiled QR decomposition process

for 3 by 3 tiles. The left-most column tiles are triangulated

first, and elimination of the triangulated column and update for

triangulation of the second and third columns are done. After

the update for elimination of the second and third column tiles,

the second column tiles will start triangulation, and there will

be followed elimination of the second column and update for
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UE UE

T
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UE
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T
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Fig. 3. A part of DAG of tiled QR decomposition

triangulation of the third column follows. This process will be

repeated until all tiles finish the QR decomposition operation.

III. MOTIVATION

A. Load change within each QR step

As we discussed in Section II, there are four steps for the

tiled QR decomposition algorithm. In the algorithm, the char-

acteristics of each step’s operation are very different. Fig. 4

shows the operation time of each tiled QR decomposition step

for a single tile on each device, and TABLE I shows the

number of tiles to be operated, where the numbers of row

and column tiles for the remaining part of the matrix are M
and N . The triangulation and elimination processes have more

computation load than the other processes for a single tile,

746746746746746746
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Fig. 4. QR time for each step on each device

since they are based on an actual QR decomposition operation

for each tile. In terms of parallelism, however, there are

relatively few tiles that have to be triangulated or eliminated

for each iteration. The two update processes have less load and

higher parallelism. Therefore, we divide non-update processes

and update processes depending on each device’s computation

speed and parallelism.

TABLE I
THE NUMBER OF TILES TO BE OPERATED FOR EACH STEP

Step Num. tiles
Triangulation M
Elimination M

Update for triangulation M × (N − 1)
Update for elimination M × (N − 1)

(Remaining part M by N )

B. Heterogeneity of computing devices

Since each computing device has a different architecture,

clock speed, memory bandwidth, and the number of parallel

processors (or cores), the time taken for the QR operation

should be different. For small matrix sizes or only a few tiles,

a device that has a fast speed for each core can be effective

for the entire operation, although the parallelism of the device

is relatively low. For large matrix sizes or many tiles, a

device that has high parallelism (a number of parallel cores)

can be more powerful. In terms of tiled QR decomposition,

triangulation and elimination are the cases of the former, and

the two update processes are cases of the latter. In other

words, there will be an appropriate device for each operation

step in terms of performance and parallelism, and finding the

appropriate device can increase the total performance.

C. Effect of the number of devices

To maximize parallel operation, using as many computing

devices as possible is trivial. For tiled QR decomposition,

however, there are unavoidable data transfers among devices.

After each triangulation and elimination process, matrices to

update right-side tiles should be transferred among devices. If

the number of devices increases, the total data size of the

transfer will increase. This implies that there is a tradeoff

between the parallelism (calculation speed) advantage and the

data transfer overhead disadvantage.

This disadvantage is more critical for a small size matrix.

Fig. 5 shows the proportion of calculation time and commu-

nication time, normalized by the total operation time, using

four-core CPU and three GPUs. For small matrices, from 160

by 160 to 320 by 320, the portion of communication is more

than 20 percent, and for larger matrices, the portion is less than

10 percent. This is because, for square matrices, if the matrix

size increases, the number of tiles to be calculated increases as

a square of the row or column size, and the number of tiles to

be transferred increases proportionally to the row or column

size.

Fig. 6 shows the time taken for various numbers of par-

ticipating GPUs. Using a single GPU, two GPUs, and three

GPUs are fastest on different sections of matrix sizes. The

two tradeoff values vary depending on the number of tiles or

the matrix size. Therefore, for a fixed matrix size, we can

optimize the number of computing devices using the tradeoff

terms, and using all available devices will not always give the

best performance for some sizes of matrices.
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IV. DESIGN

For a tiled QR operation, the tile and matrix shape can be

square, tall and skinny, or short and fat. Each shape can be

effective depending on the system. In our work, we use square

tiles and focus on a square matrix. Some tiled QR algorithms,

such as Song et al.’s work [7], use different tile sizes for CPUs

and GPUs. If each tile is calculated on a fixed device, the tile

size can be optimized depending on the device, and the size on

each device may be different. In our work, however, some tiles

can be calculated on multiple devices as will be discussed, so

we use equal tile sizes for all devices. Here, load balancing is

done depending on the number of distributed tiles, rather than

the size of each tile.

A. Main computing device selection

The main computing device is the device that mainly ex-

ecutes the triangulation and elimination processes. Non-main

devices receive the result Q matrices of the main computing

device, and they operate the update processes, which means

their operations are dependent on the main computing device.

Therefore, to maximize overall performance, the main com-

puting device should be able to finish its job by the time the

other devices finish. Of course, the main computing device can

operate some of the update processes if the computation time

on the main computing device is a lot faster than the others. If

we select just the fastest device as a main computing device,

the update processes should be done on a slower device, and

the main computing device might wait too long for the other

devices.

Synthetically, a device that is fast enough to finish the tri-

angulation and elimination processes before the other devices’

update processes will be selected as a main computing device,

and the device doesn’t have to be the fastest device. Algo-

rithm 2 shows the selection process for the main computing

device. It first finds candidate devices that can finish T or E

before the UE or UT of other devices, and insert it into a list.

After constructing the list, the device that has the minimum

speed must be found, because non-minimum speed devices are

better to be used to do update processes.
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Fig. 6. Time taken for whole QR decomposition on various number of
devices

B. The number of devices selection

As we discussed in the Section III, if the number of devices

increases, there will be a tradeoff between the parallelism

advantage and the communication disadvantage. We try to

find the optimal number of devices using the tradeoff fac-

tors. First, all devices are ranged in the descending order

of the update processing speed, with the main computing

device appearing first. Here, because the main computing

device should participate in the QR decomposition algorithm,
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Algorithm 2 Main computing device selection

1: procedure MAIN SELECTION

2: for i← 1 to numDev do
3: if can finish T before UE() then
4: if can finish E before UT () then
5: insert list(i)
6: end if
7: end if
8: end for
9:

10: main← find minimum speed device id()
11: return main
12: end procedure

it comes at the head of the list. Then, for all available

devices, we calculate the expected operation advantage and

communication disadvantage for the first iteration. Since both

times are proportional to the number of tiles, the trend for

whole iteration will be similar to the first iteration.

The expected operation time Top(p) is determined by the

Equation 10.

Top(p) =

max
1≤i≤p

⎡
⎢⎢⎣

#tilem × (timem(T ) + timem(E))
+#tile(m)× (timem(UT ) + timem(UE))

or
#tile(i)× (timei(UT ) + timei(UE))

⎤
⎥⎥⎦ .

(10)

Here, #tile(i) is the number of tiles distributed to the

device i for update processes, and timei(op) is the average

time taken for single tile to do op, on the device i. The device

m denote the main computing device. #tilem is the number of

tiles for triangulation and elimination on the main computing

device. The main computing device operates all four of the

steps, so the time is calculated as the sum of the time taken

for the four steps. For other devices, since they operate only

update processes, the time will be a sum of the time taken

for the update. Finally, because the operation itself is done in

parallel on each device, the maximum value of operation time

will finally determine Top.

The expected communication time Tcomm(p) is determined

by the Equation 11.

Tcomm(p) =

p∑
i=1

(
3MT 2 × size(element)× 1

speed(m, p)

)

+(M − 1)T 2 × size(element)× 1

speed(j,m)
. (11)

Here, M is the number of row tiles and T is the tile

size. size(element) is the size for each element of matrix,

speed(x, y) is the communication speed from x to y, and

speed(x, y) = ∞ if x = y. For the first iteration, MT 2

and 2MT 2 should be transferred from the main computing

device to other devices after triangulation and elimination re-

spectively, for next update process. In the case of triangulation,

each tile will generate one Q matrix with size T 2, and the total

size of these Q matrices will be MT 2. For elimination, each

couple tiles will generate two Q matrices with size T 2, and the

total size will be 2MT 2. After elimination, the next column

tiles, whose size is (M − 1)T 2, will be transferred from the

device j to the main computing device, where j is allocated

device of next column.
Algorithm 3 shows the actual optimization process. If N

is the number of all available devices, the algorithm finds p
which minimizes T (p) = Top(p) + Tcomm(p) for 1 ≤ p ≤ N .

After the p value is finally determined, p devices, which come

from the head of the device list, participate in operating the

update processes, including the main computing device.

Algorithm 3 The number of devices selection

1: procedure NUM DEV SELECTION

2: for i← 1 to totalNumDev do
3: insert list(i)
4: end for
5:

6: order list by update speed()
7: move main dev to list head()
8:

9: T (0)←∞
10: pmin ← 0
11: for p← 1 to list size do
12: Top(p)← CALC Top(p)
13: Tcomm(p)← CALC Tcomm(p)
14: T (p)← Top(p) + Tcomm(p)
15:

16: if T (p) < T (pmin) then
17: pmin ← p
18: end if
19: end for
20: return pmin

21: end procedure
22:

23:

24: procedure CALC Top(p)

25: return max1≤i≤p

26:

⎡
⎢⎢⎣

#tilem × (timem(T ) + timem(E))
+#tile(m)× (timem(UT ) + timem(UE))

or
#tile(i)× (timei(UT ) + timei(UE))

⎤
⎥⎥⎦

27: end procedure
28:

29:

30: procedure CALC Tcomm(p)

31: return
∑p

i=1

(
3MT 2 × size(element)× 1

speed(c,p)

)
32: +(M − 1)T 2 × size(element)× 1

speed(j,c)
33: end procedure

C. Tile distribution
After dividing a given matrix, there will be many tiles.

Grouping those tiles for each column, the column tiles will be

749749749749749749



distributed into p devices. Here, p is the value from the number

of devices in the optimization process. Algorithm 4 shows how

to distribute tiles in our work. Before distribution, we first find

the integer ratio of all the devices using the number of tiles that

can be updated in a unit time. For example, if three devices,

whose IDs are 0, 1 and 2, can process 8, 12 and 4 tiles in a

unit time, respectively, the ratio will be 2 : 3 : 1.

Using this ratio, we can construct a distribution guide array,

which is a kind of cyclic string array. The length of the array

is the sum of all the ratio values. Within the array, the ID of

each device is cyclically distributed, depending on distributed

according to the ratio that we calculated. While the whole

array is generated, the algorithm will find the maximum ratio

value, insert the ID of that ratio into the array, and reduce the

ratio value by 1. For example, if the ratio of three devices is

2 : 3 : 1, the distribution guide array will be {1, 0, 1, 0, 1, 2}.
When the number of columns is not a multiple of the length

of the array, the last few columns may not be distributed as

the ratio. Since more tiles on a faster device is better for

performance, we construct the array with the device with a

larger ratio value appearing first.

Finally, according to the array, the i-th column tiles are

distributed by the Equation 12, except the first column tiles

distributed to the main computing device, because their only

operations are triangulation and elimination.

distribute(i) = guide array[i%length(guide array)].
(12)

D. Tiled QR decomposition progress

The actual process of tiled QR decomposition is the same as

introduced one in Section II. As already shown in Fig. 3, trian-

gulation comes first, elimination and update for triangulation

follow, and next triangulation begins with the update for the

elimination process. At the end of each process, appropriate

data transfer is needed, depending on our distribution method.

After triangulation, update matrices are transferred from the

main computing device to non-main devices. After elimina-

tion, update matrices are transferred as in the triangulation

case, and the next column tiles are also transferred from

one non-main devices to the main computing device for next

triangulation process. This iteration is done until all tiles finish

their QR operation.

V. IMPLEMENTATION

Fig. 7 shows the tiled QR decomposition system structure.

The manager thread, which runs on a CPU, selects the main

computing device, decides the number of participating devices,

distributes tiles, and migrates dependent data among the de-

vices. Computing threads, which also run on a CPU, will do

appropriate computations using the allocated device, CPU or

GPU. Each computing thread for CPU can have several CPU

slave threads which operate jobs in parallel. Each computing

thread for a GPU can have a single GPU, and the computation

threads of the GPU will behave as slave threads in the CPU

case.

Algorithm 4 Tile distribution with guide array

1: procedure GET RATIO(i)
2: get number of tile update on unit time()
3: get integer ratio()
4: return integer ratio value
5: end procedure
6:

7:

8: procedure GENERATE ARRAY

9: ratio sum← 0
10: for i← 1 to p do
11: ratio(i)← GET RATIO(i)
12: ratio sum← ratio sum+ ratio(i)
13: end for
14:

15: for i← 0 to ratio sum do
16: id← find maximum ratio value()
17: guide array[i]← id
18: ratio(id)← ratio(id)− 1
19: end for
20: return guide array
21: end procedure
22:

23:

24: procedure ALLOCATE(index, id)

25: The column at [index]
26: will be allocated to the device[id]
27: end procedure
28:

29:

30: procedure DISTRIBUTION

31: guide array ← GENERATE ARRAY ()
32: array length← length(guide array)
33:

34: ALLOCATE(1,main dev)
35: for i← 2 to p do
36: ALLOCATE(i, guide array[i%array length])
37: end for
38: end procedure

Manager
thread

Computing
thread
Device�#0

Computing
Thread
Device�#1

Computing
Thread
Device�#2

Computing
Thread
Device�#3

…

GPU GPU GPU CPU

GPU�threads GPU�threads GPU�threads CPU�threads

Fig. 7. CPU and GPU heterogeneous computing system structure
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TABLE II
EVALUATION ENVIRONMENT

CPU Intel i7-3820 (Quad core, 3.6GHz)
Main Memory 32GB

GPU Two GTX680 (1536 cores)
One GTX580 (512 cores)

OS Ubuntu 12.04
Linux version 3.2.0

GPU driver version 304.54
CUDA version 5.0

Compiler g++ 4.6.3 and nvcc 5.0 v0.2.1221

CPU processes are implemented based on the PLASMA

library [8]. At the beginning, each computing thread for

the CPU gets ready to use the library. For the GPU part,

we implement QR decomposition based on the Householder

algorithm [4]. As a tile size, we use 16 by 16 because the

number of cores of the CPU and GPUs are the power of 2. For

the element data, we generate random floating point numbers.

VI. EVALUATION

For evaluation hardware, we construct the single node

computing environment as TABLE II. We use four core CPU

and three GPUs. Two GPUs are GTX680, which has 1536

cores. The other GPU is GTX580, which has 512 cores.

For software, we use Ubuntu 12.04 OS, with Linux kernel

3.2.0. The version of the GPU driver is the NVIDIA graphic

driver 304.54, and the CUDA version is 5.0. As compilers,

g++ 4.6.3 and nvcc 5.0 v0.2.1221 are used.

A. Scalability

First, we evaluate scalability. Fig. 8 shows the QR decom-

position time taken for various numbers of computing devices,

with changing the matrix size. Because the number of cores

of each device is different, we arrange the experiment data as

the number of parallel cores of the devices used. The x-axis is

the number of parallel cores in a logarithmic scale. The four

points of each graph are for using only a CPU with 4 cores,

a CPU with one GTX580, a CPU with one GTX580 and one

GTX680, and a CPU with all available GPUs, respectively.

The y-axis is the time taken for the whole QR decomposition

operation as a unit of a second, also in a logarithmic scale. In

the figure, each graph shows decreasing behavior for all five

matrix sizes. For a 3,200 by 3,200 matrix, we can reduce the

operation time from 19.9 seconds to 0.28 seconds. For a 6,400

by 6,400 matrix, we can reduce the time from 73.5 seconds

to 1.09 seconds. For other cases, 9,600 by 9,600, 12,800 by

12,800, and 16,000 by 16,000 matrices, we can reduce the

time from 171.7, 269.3, and 462.1 seconds to 2.52, 4.24,

and 6.87 seconds, respectively. Here, because all graphs are

proportionally decreasing, we can conclude that our method

has nice scalability.

B. Main computing device selection

Next, we evaluate whether the selected main computing

device can maximize the performance or not. In our environ-

ment, there are three types of computing devices: CPU, GPU-

GTX580, and GPU-GTX680. The processing speed for each
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Fig. 9. Time taken depending on the main computing device selection

device is already shown in Fig. 4. Because the triangulation

and elimination speed of the CPU is too slow compared to

other devices’ update speed, it is not good to use the CPU as

the main computing device. In case of GTX680, the processing

speed is slower than GTX580, but it has more parallel cores,

1,536, than GTX580’s 512 cores. Here, using GTX680 for

the update processes is more useful than using it as a main

computing device. Therefore, our selection is GTX580.

Fig. 9 shows the QR decomposition time taken for various

selections of the main computing device. The x-axis is the

matrix row and column sizes. The y-axis is the time taken

for the whole QR decomposition operation as a unit of a

second. There are four cases, GTX580 as the main computing

device (our selection), GTX680 as the main, no specific

main computing device in which all GPUs process their own

triangulation and elimination, and CPU as the main. The last

case, using the CPU as the main computing device, is not

shown well in the figure, because it is too slow: 6.1, 26.3,

76.4, 205.7, 430.6 seconds for 3,200, 6,400, 9,600, 12,800,

16,000 matrix sizes, respectively. For appropriate selection,

in the case of 16,000 by 16,000 matrix, we can speed up 13

percent from selecting the main as another GPU, and 5 percent

from not selecting a specific main computing device.
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TABLE III
THE NUMBER OF DEVICES OPTIMIZATION

Predicted Actual
Matrix size 1 G 2 G 3 G 1 G 2 G 3 G

160 1.00 3.73 5.27 1.00 4.00 5.99
320 1.00 2.77 3.82 1.00 1.62 1.93
480 1.00 1.40 2.11 1.00 1.12 1.24
640 1.02 1.00 1.43 1.21 1.00 1.08
800 1.03 1.00 1.34 1.54 1.00 1.07
960 1.03 1.00 1.29 1.80 1.00 1.11
1120 1.06 1.00 1.23 2.35 1.00 1.07
1280 1.09 1.00 1.19 2.71 1.00 1.02
1440 1.13 1.00 1.16 2.68 1.00 1.09
1600 1.15 1.00 1.13 2.71 1.00 1.09
1760 1.18 1.00 1.10 2.63 1.00 1.06
1920 1.20 1.00 1.08 3.00 1.00 1.18
2080 1.22 1.00 1.05 3.52 1.00 1.18
2240 1.23 1.00 1.04 3.27 1.00 1.19
2400 1.25 1.00 1.02 3.07 1.00 1.03
2560 1.26 1.00 1.01 3.02 1.00 1.01
2720 1.28 1.01 1.00 3.12 1.01 1.00
2880 1.31 1.02 1.00 3.07 1.09 1.00
3040 1.34 1.03 1.00 3.20 1.14 1.00
3200 1.36 1.04 1.00 3.18 1.14 1.00
3360 1.38 1.05 1.00 3.17 1.16 1.00
3520 1.40 1.07 1.00 2.90 1.13 1.00
3680 1.42 1.07 1.00 2.82 1.09 1.00
3840 1.44 1.08 1.00 2.78 1.12 1.00
4000 1.46 1.09 1.00 2.69 1.19 1.00

(*) Normalized value for smallest time

C. The number of devices

To verify the optimization of the number of devices, we

compare the result from the predicted number and the actual

fastest number of devices. We only consider the number of

GPUs, because the aid of the CPU is not much effective

for determining the number of devices. TABLE III shows

the predicted time, which is Top + Tcomm, and the actual

computation time, with normalization for the smallest time

value for each case. The notation 1G, 2G and 3G means using

one GPU (GTX580), two GPUs (GTX580 and 680), and all

three GPUs, respectively. Because we selected GTX580 as the

main computing device, it appears as the first of the device

list. For matrix sizes 160 by 160 to 480 by 480, using only a

single GPU is the fastest one among the three cases for both

prediction and actual result. For matrix sizes from 640 by 640

to 2,560 to 2,560, using two GPUs is faster than a single

GPU or three GPUs, of course for both results. Finally, for

matrix sizes larger than 2,720 by 2,720, using all three GPUs

the fastest. Through all matrix sizes, the number of devices,

which is predicted to have a minimal Top + Tcomm value,

can maximize actual performance. Therefore, the suggested

equations can actually optimize the operation time.

D. Tile distribution

Now, we evaluate the tile distribution with the distribution

guide array. We construct a distribution guide array based on

the number of tiles that can be processed in a unit time for

each device. Fig. 10 shows the QR decomposition time for the

various distribution methods. The x-axis is the matrix row and

column size, and the y-axis is the time taken for the operation
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Fig. 10. Time taken depending on the tile distribution

in a unit of a second. We compare three distributions: using

the distribution guide array (our method), distribution based

on the number of cores of each device, and the same number

of tiles distribution for GPUs with some tiles on the GPU

depending on the number of cores. For smaller matrix sizes,

the distribution method does not have much effect, because the

actual distribution itself is not much different. As the matrix

size becomes larger, each method shows different increasing

speed. For a 16,000 by 16,000 matrix, our method is 21 percent

faster than the evenly distribution method, and 10 percent

faster than the number of cores based method.

VII. RELATED WORKS

There have been some attempts to compute QR decompo-

sition efficiently on the CPU and GPU hybrid core system.

Early attempts [9], [10] tried to run QR decomposition on the

GPU, with porting existing parallel QR libraries into the GPU.

Since they tried to do almost all the calculations on the GPU

to avoid communication, they had low CPU utilization. In our

work, we used all the computing devices which participate in

the QR decomposition.

Agullo et al. [11] used the dynamic tile migration method

between the CPU and GPU. During program construction, the

programmer can select parts of the code which might run on

the GPU, and the actual operation device is determined on the

runtime. This algorithm can select the appropriate device at the

runtime, with accompanying device monitoring overhead. Our

work focused on tile migration for specific tiles at a specific

time.

Communication-Avoiding QR algorithms [12], [13] dis-

tribute tiles to minimize the communication cost. They divide

the matrix into row by row and the group row tiles are

distributed into a single cluster, where their target system is a

multi-cluster system. However, in our work, we use a column

by column tile distribution, which is easy for load balancing,

since there is not much communication cost for our system.

Song et al. [7] proposed an auto tuning method. They first

ran a small size of matrix on the system to find the most

appropriate tile size for each computing device, CPU and

GPU, and adapted the tuned tile size into a larger matrix.
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In our work, we tried to optimize more mathematically, and

we adjusted the number of fixed size tiles rather than the tile

size itself for load balancing.

VIII. CONCLUSION

In this paper, we introduced mathematical optimization for

tiled a QR decomposition operation on a CPU and GPU

heterogeneous computing system. We first divided the single

tile operation into four steps. We selected a specific device

as the main computing device, which mainly operates the

triangulation and elimination process. We also optimized the

number of devices that would participate. For all available

devices, we can find the optimal number based on the tradeoff

between the operation time and the communication cost.

Additionally, we introduced the distribution guide array, which

can distribute tiles for update processes efficiently to several

devices.

As a further work, QR decomposition of very large matrix

can be considered. Our current work assumes that there is no

problem about memory size, while a lack of memory problem

can occur for very large matrix sizes. Another one is expanding

the suggested equations, which is verified for CPU and GPU

heterogeneous cores, into other computing devices, or a multi

node environment.
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